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Abstract. The icosahedral or decagonal symmetry of quasicrystals is well described by a periodic structure
in higher dimensions. One consequence is the existence of dynamic phason modes in addition to the
phonon modes. In an atomistic model phasons show up as correlated atomic jumps. We detect the phasons
by the calculation of correlation functions and the dynamical structure factor in molecular dynamics
simulations similar to the procedure used for phonons. In the simulations it is also possible to observe
atomic jump processes directly. The models studied here represent icosahedral AlCuLi and decagonal
AlCuCo quasicrystals. Ring processes are observed in the icosahedral case, and flips in the decagonal
model.

PACS. 61.44.Br Quasicrystals – 66.30.-h Diffusion in solids – 68.45.Kg Dynamics; vibrations

1 Introduction

Quasicrystals possess dynamic phason modes in addition
to the phonon modes. In an atomistic model phasons
show up as correlated atomic jumps. Bak and Lubensky
et al. [1,2] were the first to describe the properties of pha-
sons in quasicrystals in a continuum model. The character
of the phasons is diffusive in contrast to the propagating
phonon modes.

Up to now, many experimental as well as theoretical
investigations of the dynamical properties of quasicrys-
tals have been concentrating on the phononic part of the
dynamical spectrum.

Measurements of the phonon density in AlCuLi sin-
gle crystals with inelastic neutron scattering by Goldman
et al. [3] are in quantitative agreement with calculations by
Hafner et al. [4] for low energy modes. De Boissieu et al. [5]
and Boudard et al. [6] also have studied the phonon disper-
sion relation of i-AlPdMn single crystals with the help of
inelastic neutron scattering. They observe isotropic acous-
tic modes. Band gaps which one expects due to quasiperi-
odicity have not been found. Longitudinal optical modes
have been detected [6,7]. Suck has measured the general-
ized phononic density of states of d-Al71Pd19Mn10 [7].

Hafner and his group have calculated in detail the dy-
namical structure factor of quasicrystals for the icosahe-
dral Henley-Elser-type models [8] as well as for different
decagonal models [9]. In their approach the dynamical ma-
trix is used to compute the eigenvectors, eigenvalues, and
participation ratios for each mode. The density of states
and the dynamical structure factor were determined. In
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this approach the full interaction is replaced by a harmonic
one and the strength of the springs enters the dynami-
cal matrix. Jumps of the atoms, long-range diffusion and
the nonlinearity of the interaction are neglected. There-
fore the phasonic degrees of freedom of the quasicrystals
are not taken into account. At low energies propagating
modes exist with long wavelength and longitudinal and
transversal acoustic character in icosahedral [4,10] and in
decagonal [11] quasicrystals. The modes yield a linear and
isotropic dispersion relation and lie in the vicinity of the
strongest Bragg maxima (the Γ -point and its symmetry
equivalent images). At higher energies a hierarchy of dis-
persionless optical modes around the points of high sym-
metry in the reciprocal lattice have been predicted and
observed [7]. These points are equivalent to the pseudo-
Brillouin zone boundaries. Some modes are localized at
special positions of the quasilattice.

Further calculations with similar methods have been
carried out by Los et al. [12] and by Kasner and
Böttger [13] for simple quasicrystal models. The dynam-
ical properties of AlMnSi quasicrystals have been inves-
tigated by Poussigue et al. [14]. The difference between
the work of Hafner et al. and Poussigue et al. is that the
latter observe the localization of the modes already for
lower wave numbers and that it extends up to the pseudo-
Brillouin zone boundaries.

Cockayne and Widom [15] have studied phason ener-
getics in quasicrystals using realistic energetics but un-
physical dynamics. Kalugin and Katz have conjectured
that there exist new diffusion mechanisms in quasicrystals
due to phasons [16]. A local rearrangement of the cells in a
tiling model represents a process which leads to long-range
diffusion (so called “flip” diffusion). The temperature
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Fig. 1. Part of the d-AlCuCo model. In the upper region of
the picture a part of the triangle tiling of layer one is shown
and in the lower region a part of the triangle tiling of layer
two. The symbols are: squares Co, triangles Cu and circles Al.
Filled symbols are atoms in layer one and empty symbols in
layer two.

dependence of the diffusion constant should deviate from
an Arrhenius law [16]. The flip diffusion in tiling mod-
els has been recorded by several groups with Monte-Carlo
simulations. As an example we cite reference [17].

Coddens et al. have observed jump processes in
i-AlCuFe and i-AlPdMn directly by means of quasielas-
tic neutron scattering and Mößbauer spectroscopy [18,19].
They show that the intensity of the quasielastic signal de-
pends on temperature, but the width of the signal is inde-
pendent, and they argue that this behavior contradicts the
expectations of the Kalugin and Katz model [20]. The re-
sults can be interpreted as jumps of Cu and Pd to second-
nearest neighbor places which implies a reordering of the
clusters in the cluster model of the quasicrystals. It may
also be possible that whole chains of atoms move. Angu-
lar dependent measurements show that the jumps occur
preferably along twofold axis.

At least the observed activation energies and the pref-
actors of high temperature tracer diffusion experiments
(see for example [21]) can be interpreted with high con-
fidence as vacancy diffusion. New tracer diffusion experi-
ments have extended the range of measurements down to
400 ◦C. At about 600 ◦C a new diffusion process overtakes
the ordinary vacancy diffusion. Blüher et al. [22] speculate
that this new process is flip assisted diffusion.

We have seen that up to now the dynamical properties
of quasicrystals were studied mostly in the harmonic ap-
proximation. The characteristic properties have been ob-
tained by diagonalizing a dynamical matrix. On the other
hand the computation of the dynamical properties of liq-
uids, glasses and crystals directly by molecular dynamics
simulations has been carried out for years [23,24]. In this
method the atoms are free to move under the influence of
the forces which act on them. They also can change their
sites. In the molecular dynamics approach one records the
van-Hove correlation functions in space and time during
a simulation and analyses them directly or one calculates
the dynamical structure factor by a spatial Fourier trans-
form (which yields the intermediate scattering function)

(a) (b)

Fig. 2. (a) Simpleton flip (b) trapezoid flip.
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Fig. 3. Large tiling (full lines) from the Burkov decoration
and some tiles of the triangle pattern which indicate the layers
separately (broken lines). Left: initial configuration. Right: fi-
nal configuration after two flips of the prismatic cluster. (From
Ref. [25].)

and a Fourier transform in time. With the correlation
functions it is possible to study diffusive and phasonic
modes beyond the dynamical matrix approach.

The paper is organized as follows: First we describe
the model quasicrystals and discuss geometric models for
the phasonic flips (Sect. 2). A short discourse about the
correlation functions (Sect. 3) and molecular dynamics
(Sect. 4) follows. Then we present the results for AlCuCo
and AlCuLi quasicrystals (Sect. 5).

2 The Models and jumps

2.1 The decagonal model

The starting point are flips which have been derived by
Zeger for the Burkov model of AlCuCo [25,26]. In this
work it has been demonstrated that each layer of AlCuCo
quasicrystals may be represented with the help of triangle
tilings (Fig. 1). In each layer the Co, Cu and a part of the
Al atoms occupy the vertices of the particular triangle
tiling, whereas the remaining Al atoms of the layer lie in
the center of the acute-angled triangles. Since the possible
flips in the triangle tiling are well-known, phasons may
now be introduced into the AlCuCo model. If a simpleton
flip is carried out two atoms move within a layer – they
jump a distance of 0.87 Å – whereas in a trapezoid flip
no atom moves (Fig. 2). Trapezoid flips are only required
to change the tile arrangements determined by matching
rules. Through a proper coupling of the simpleton flips
between the layers one can describe the flip of tenfold
prismatic clusters (Fig. 3), similar to the flips observed in
experiment [27]. In the simulations we do not discern Co
and Cu and thus make use of a binary Al-TM model.

2.2 The icosahedral model

The icosahedral model is a modification of the truncated
icosahedral (TI) model described in [28]. In this model
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Fig. 4. The modified rhombic dodecahedron. The light atoms
are small A atoms. The dark atoms in the interior are large B
atoms.

the corners and the mid-edge points of the standard icosa-
hedral rhombohedra are decorated with small A atoms
representing Al or Cu. In the large prolate rhombohe-
dron two additional large B atoms, representing Li are
placed on the long cell diagonal dividing it in the ratio
τ :1:τ , where τ is the golden mean. There are configura-
tions where up to ten flat rhombohedra encircle a tiling
edge. Atoms in this configuration may move around closed
polygons with ten edges. These geometrically and ener-
getically unstable configurations can be removed by the
introduction of a further tile, the rhombic dodecahedron
which replaces a pair of flat rhombohedra and a pair of
large rhombohedra (Fig. 4). The dodecahedron is filled
with a hexagonal bipyramid of B atoms. The model is
called the Henley-Elser model or binary model [8]. Ring
processes are effectively suppressed in this model. But the
tiling flips, which take place in the dodecahedra of the TI
model are also removed.

3 Correlation functions

The basis of our study is the evaluation of the van-Hove
correlation function

Gs(r, t) =
1
N

〈∑
i

δ[r + ri(0)− ri(t)]

〉

(self-correlation) and

Gd(r, t) =
1
N

〈∑
i6=j

δ[r + ri(0)− rj(t)]

〉

(distinct correlation). In molecular dynamics these func-
tions are computed directly from the time-dependent atom
coordinates.

The self-correlation function compares the position of
a particle to its position at later time. In equilibrium this

function depends only on the time difference. It produces
information about jump and diffusion processes. The dis-
tinct correlation compares the position of a particle to the
position of an other particle at a different time. It yields
information about correlated motions, for instance in a
phonon.

From the correlation function several system parame-
ters are derived: the angular averaged distinct correlation
function at t = 0 is proportional to the radial distribu-
tion function g(r), whereas the angular averaged Gs(r, t)
reproduces the diffusion profile and thus also the mean
square displacement 〈(r(t) − r(0))2〉.

The form of the van-Hove correlation function is
strongly different for solids, liquids, and glasses. In liq-
uids Gs(r, t) has the form of a Gaussian for t > 0 and
approaches zero with time. Gd(r, t) starts as the radial
distribution function and approaches the constant value 1
for large times. On the other hand in solids Gs(r, t) does
not decay to zero, but is reduced after a transient time
to a constant Gaussian peak with a width determined by
temperature. If jump processes occur then satellite peaks
are observed in addition to the maximum at r = 0. There-
fore one may extract from Gs(r, t) directly the elementary
diffusion processes and the jump geometry.

In quasicrystals phasonic flips require the possibility
of the atoms to occupy alternative places which are less
than an interatomic distance apart from the initial point.
A pair of such positions is called a split position [25].

The analysis of the van-Hove correlation functions, es-
pecially of the self part, provides direct information on flip
geometries and flip vectors. To obtain the frequencies and
the wave vectors, one has to compute its Fourier trans-
form, the dynamical structure factor.

At first one determines the intermediate scattering
function

F (k, t) =
1
N

∫
Vsim

G(r, t) exp(ikr)dr.

The dynamical structure factor is then computed from

S(k, ω) =
1

2π

∫ tmax

0

F (k, t) exp(iωt)dt.

Vsim is the simulation cell, and tmax the simulation time.
To obtain a good resolution in k- and ω-domain one should
use as many atoms as possible, and the simulations should
run as long as possible. Depending on the computational
power either the averaged van-Hove correlation function
is Fourier-transformed after the simulation or the Fourier-
transformed dynamical structure factor is averaged.

Kob [23] has pointed out that effects of the finiteness of
the simulation cell play an important role for the dynam-
ical structure factor and that the quality of the structure
factor is improved by the second method. It is, however,
much more computationally costly, especially on parallel
computers.

From the radially averaged dynamical structure func-
tion one can compute the static structure factor for ω = 0
which represents the translational order of the structure.



598 The European Physical Journal B

The Van-Hove correlation functions are valuable for
geometrical analysis, but the collective behavior of an
atom may be derived more easily from the dynamical
structure factor. The phonons are given as satellite bands
of the static structure factor at ω = 0 with the wave vec-
tor k as a parameter if S(k, ω) is represented as a function
of ω. The diffusive part is found around ω = 0. For qua-
sicrystals we expect information also about phasons.

The dynamical structure factor often is monitored only
as an angular average. This may be justified for isotropic
structures. For quasicrystals it is interesting to compute
the structure factor separately for their distinguished
symmetry directions, especially since direction dependent
jump processes [20] have been observed in experiment and
should be related to phasonic flip processes.

4 Molecular dynamics

Today molecular dynamics simulations can be carried out
for all thermodynamically interesting ensembles. The or-
dinary Newtonian equations of motion are altered in a
proper way to allow for thermostating and constant pres-
sure. The altered dynamics is not a limitation if one is
interested in thermodynamical averages only. A time step
lasts δt = 0.005 to 0.01 in dimensionless units, or 10−15 s
in real time. To compute correlation functions, however,
we have to work in the microcanonical ensemble and with
the unaltered equations of motions since we are interested
in the real paths of the atoms and in the correlations of
the real dynamics.

The simulation box of the AlCuCo model contained
3 550 atoms and had the dimension 37.69×32.06×41.06 Å.
We used a portion of the infinite quasicrystal that per-
mitted to introduce periodic boundary conditions. For
the icosahedral model we constructed a cubic approxi-
mant which contained 2 923 atoms in a box of length 14.4
interatomic distances.

Furthermore one has to use a sample in equilibrium
to avoid transients in the correlation functions. We have
therefore equilibrated the as-generated structures for a
long time with canonical NVT simulations. As a thermo-
stat we used the methods of Brown and Clarke [29] to
reduce the initial potential energy to a minimum. It took
2 000 simulation steps at T = 0.8 K. Then the samples
were equilibrated with the Nosé-Hoover thermostat [30]
at T = 8 K. The equilibration time was 100 000 steps.

Afterwards the correlation functions were collected at
512 correlation time steps and were averaged over 20 runs
at T = 8 K also.

4.1 Interactions

For the simulations of the AlCuCo model we have used
effective pair potentials which were developed especially
for quasicrystals. There are two sets for AlMnSi [31] and
AlCuCo quasicrystals [32]. We have tested both sets. First
we find that our model is obviously not dynamically opti-
mal: there exist empty decagonal prisms which are filled

when the simulation is started. This causes a transient be-
havior where Al atoms move to the center of the prisms.
Second, the Al-potential is very weak at the nearest neigh-
bor distance. Therefore the vibration amplitude of the Al
atoms is rather large, and the Al atoms act more or less
like a liquid in a solid transition metal frame. The atomic
motions caused by these effects are so strong that we have
to work at low temperatures. Nevertheless we find that
the structure model in general is stable with these poten-
tials. Since the AlMn set works better than the AlCuCo
set, we have decided to apply the later ones wince neither
set has been adapted especially for our alloy composition.

For the icosahedral model we have applied Lennard-
Jones or Dzugutov potentials [33] with parameters tuned
to stabilize the shortest atomic distances AA, AB and BB.
The results do neither depend qualitatively on the special
type of potential nor on the relative depth of the different
interactions.

4.2 Correlation functions from molecular dynamics

In liquids and simple crystalline solids all atomic sites are
equivalent. One can therefore select one atom or a small
number of atoms and compute the correlation functions
Gs(r, t) only for this subset. The computer memory re-
quirements are reduced drastically. For quasicrystals such
an approach is not feasible, since one may have of the or-
der of half a hundred different sites which contribute in a
different way to the correlation function.

In molecular dynamics the correlation functions can be
computed automatically during simulation by collecting
histograms as a function of distances and time intervals.

Instead of computing the full space and time-averaged
correlation functions G(r, t) we frequently determined the
merely space averaged function G(r, τ) where τ is the time
from the starting point of the collection of the histogram
values. This function yields the jump paths directly, but
not the statistical probability.

In practice the computation of correlation functions
requires very long simulation runs with a large number of
atoms. Nowadays they are performed on massively paral-
lel machines. We have implemented routines for the data
collection for correlation functions on vector machines [34]
which is rather straightforward due to the shared memory
of these machines.

Meanwhile routines for the self-correlation have also
been integrated in IMD [35], a program designed for
molecular dynamics simulations on massively parallel
computers with distributed memory.

On a distributed memory machine the self-correlation
function has to be computed first for the atoms on the
same processor node and collected for averaging. Second,
the correlations for the atoms which have moved from
a processing node to its neighbor have to be collected.
In a solid where the atoms have a small mobility these
two steps should be sufficient. In liquids atoms may have
moved to more distant processing nodes, and comparison
between more distant nodes are required also.
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Fig. 5. Self-correlation function G(r, t) of AlCuCo at a fixed
time step. Axis are in Å. Left: quasiperiodic plane. Right:
perpendicular plane. The circles indicate the geometrically
expected target positions of the flip. The phonon vibrations
(central part of the picture) are isotropic, the flips (outer part)
are anisotropic.

For the distinct correlation function the situation is
more complicated. One may restrict the computation of
the distinct correlation function to atoms which are sepa-
rated only up to a certain distance between the proces-
sor nodes. The further approach is similar to the self-
correlation function. But if one wants to compute the
distinct correlation for any possible distance in a sim-
plistic approach the computational complexity would be
quadratic in the number of particles. To avoid such a scal-
ing one can map the torus structure of the simulation box
on a ring-like path which touches each processing node
once. Then the data have to be moved cyclically from one
processing node to a neighbor. This algorithm is linear in
the number of particles if the number of atoms per pro-
cessing node is approximately constant.

5 Results

The self-correlation function has been computed for the
decagonal AlCuCo and the icosahedral AlCuLi model.

A restricted decagonal model was used to test the
correlation routines. A Tübingen triangle tiling [25] is
first transformed into a random tiling by means of Monte
Carlo simulations. No energy barriers are taken into ac-
count for the flips (T = ∞). The initial and final state
are then decorated with atoms such as to get AlCuCo
samples. If the self-correlation between the two states is
computed, an idealized picture is obtained where the ther-
mal fluctuations of the atoms are suppressed. The test
has been especially valuable for AlCuCo since the super-
position of phonon modes and flips makes an analysis of
the atomic motions obtained by molecular dynamics quite
complicated.

In the molecular dynamics simulations jumps with
the shortest and second shortest distance (resulting from
two sequential shortest jumps) could indeed be observed
(see Fig. 5). The atoms move to alternative positions
which in the first case are less than half an interatomic
distance apart from their initial position. Due to this short

Fig. 6. Self-correlation G(r, t) of AlCuCo as a density plot
of time and distance. The maximum at the left side are the
phonon vibrations, whereas flip processes are captured at the
right side. The time is given in picoseconds, the distances
are in Å.

jump vector the self-correlation could only be computed
at low temperatures. Even then the jump processes are
partially superposed by phononic vibrations of the atoms
around their equilibrium positions. The problem at low
temperatures, however, is that only very few jumps occur.
If we compare the two plots in Figure 5 we find that the
phonon vibrations (the saturated central part of the plots)
are three-dimensional isotropic. The jumps (the scattered
points at about 0.5 to 1.5 Å) have cylindrical symmetry
only. In Figure 5 we also observe that there are preferably
in-plane jumps and axial jumps, and only few diagonal
jumps, if any.

If one displays the distance of the atoms from their
initial position instead of the time-averaged correlation
function the paths of the atoms can be studied directly
and jumps to alternative positions can be determined un-
ambiguously (Fig. 6). The overwhelming contribution of
the phonons to the correlation function can be read from
Figure 7. On the right side of the histogram we find again
the weak traces of the flips. From these one could in princi-
ple derive the frequencies and the jump times of the flips,
but for a more detailed and accurate analysis it is better
to construct special flip detectors [36,37].

The correlation function Gs(r, t) (Fig. 8) clearly shows
a kink at about 0.80 to 0.87 Å. These are the jumps
that have been predicted by Zeger from geometrical stud-
ies [25]. Then there is a shoulder at 1.4 to 1.45 Å and
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Fig. 7. Self-correlation G(r, t) of AlCuCo as a histogram of
time and distance. The maximum at the left side are the
phonon vibrations, whereas flip processes are captured at the
right side. The time is given in seconds, the distances are in Å.

a maximum at 1.8 Å as well as a weak maximum at 1.6 to
1.65 Å. The shoulder at 1.4 Å can be interpreted as two
consecutive jumps of length 0.87 Å with an angle of 72◦
between them. The maximum at 1.8 Å may be related to
the jumps with distance 1.79 Å as predicted by Zeger.

The self-correlation has also been computed for the
icosahedral AlCuLi model [38]. No flips are observed, only
nearest neighbor jumps occur. Therefore the problem of
superposition with phonon vibrations does not show up.
If the self-correlation function is plotted at constant time
intervals we obtain a series of decreasing maxima at sep-
arations which are close to the nearest neighbor distance.
The interpretation is that atoms jump successively from
one atom site to the next. Furthermore, if the tempera-
ture is lower than 60% of the melting temperature, only A
atoms move, whereas B atoms only vibrate. This picture
changes completely at higher temperatures: the jumps of
A atoms are replaced by long-range diffusion where all
atoms at all sites take part equally.

Details for this model and for modifications thereof
have been recorded elsewhere [38].

6 Discussion

Apart from the icosahedral model there exists a geomet-
rically rather similar monatomic dodecagonal model [39]
related to the NiCr quasicrystal structures. The results
for this model are, however, drastically different from
the icosahedral case: the atoms are jumping in one-
dimensional chains parallel to the periodic direction. Trig-
gered by these jumps are rearrangements of the tiling.
An important difference between the two models is the
monatomic nature of the dodecagonal structure which

1e-05
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G
(r
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Fig. 8. Angular-averaged self-correlation G(r, t) of AlCuCo.
At the left border one observes phonon vibrations, at the right
border flip processes may be seen. The line paths represent
different time intervals, with time they move to the right. The
distances are in Å.

simplifies the interchange of atoms. In the icosahedral
model even geometrical flips are rather hard to find. First
steps have been taken to solve this problem [40]. A new
tile, a twin of two rhombic dodecahedra has to be intro-
duced to enable flips in the binary version of the icosahe-
dral model. No molecular dynamics simulations have been
carried out yet for this variant.

The decagonal model on the other hand is structurally
quite different from the dodecagonal model with respect
to topological atom arrangement and packing density.
The flips are, however, rather similar (the icosahedral
and dodecagonal model are densely packed Frank-Kasper-
phases, the dodecagonal model is not densely packed).
The decagonal and the dodecagonal model are both lay-
ered in contrast to the icosahedral model. Similar mo-
tions of atoms are permitted in all layers, and flips of
tiles are observed. But the similarities end here already:
in the dodecagonal the atoms move long distances along
the periodic direction whereas they are almost completely
confined to the layers in the decagonal model.

In conclusion we find that the atomic motion, i.e. flips
or jumps of the atoms depend strongly on the quasicrystal
type. No general rules can be determined up to now.

We have demonstrated that correlation functions of
quasicrystals can be computed successfully directly by
molecular dynamics simulations. The computations are,
however, very time-consuming (this has been expected).
The interpretation of the results is further complicated
by the fact that we have a discrete structure, but atomic
jumps which connect sites closer than the nearest neigh-
bor distance. Such jumps do not even occur in glasses, and
therefore the study of disordered glasses is easier with re-
spect to atomic jumps.

We have implemented programs that allow us to com-
pute different types of correlation functions. First re-
sults have been reported and compared to other results
obtained by direct observation of the jumps and flips
with flip detectors. Further extensive molecular dynamics
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Fig. 9. Histogram of the atom jumps at low temperatures.
Radius is given in interatomic distances. Top: A atoms. Bot-
tom: B atoms. The different line paths represent different time
intervals, with time they move to the right. A comparison of
the two pictures shows that only A atoms jump whereas the
B atoms only vibrate. The jump rates are 33 jumps per 10 000
atoms and 105 time steps at T = 0.55Tmelt, the jump times are
of the order of the vibration period.

simulations are required to collect more data. An interest-
ing application is the study of the collective motion of the
atoms which can hardly be captured by direct observation
of single jumping atoms.

The authors are indebted to their colleagues at the Institut für
Theoretische und Angewandte Physik for helpful discussions,
especially to Gabriele Zeger.
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